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ABSTRACT 

It is shown that for real m x n matrices A and B the system of matrix equations 
AX = B, BY = A is solvable for X and Y doubly stochastic if and only if 
A = BP for some permutation matrix P. This result is then used to derive other 
equations and to characterize the Green's relations on the semigroup Q, of all 
n x n doubly stochastic matrices. The regular matrices in ~n are characterized 
in several ways by use of the Moore-Penrose generalized inverse. It is shown 
that a regular matrix in ~ is orthostochastic and that it is unitarily similar to 
a diagonal matrix if and only if it belongs to a subgroup of ~n. The paper is con- 
eluded with extensions of some of these results to the convex set S n of all n x n 
nonnegative matrices having row and column sums at most one. 

A l l  matr ices  considered in this  paper  are real.  Mos t  o f  the defini t ions and 

no t a t i on  are found  in [-12], a l though  some are given below. 

A square mat r ix  A = (au) is doubly stochastic i f  

a u > 0 a n d  ~ a,k= ~ a k ~ = l f o r e a c h i a n d j .  
k = l  k = J .  

Let fL  denote  the set o f  a l l  n x n d o u b l y  s tochas t ic  matr ices  and  let ~ ,  be the set 

o f  a l l  n x n p e r m u t a t i o n  matr ices ,  tha t  is, doub ly  s tochast ic  matr ices  P = (Pi) 

with Pu = 0 or  1 for  each i and  ] .  Algebra ica l ly ,  f~, forms a semigroup  under  

ma t r ix  mul t ip l i ca t ion  and ~ ,  is a subgroup  o f  ~),. Moreover ,  ~ ,  is a c ompa c t  

Hausdor f f  semigroup with  respect to the na tu ra l  t opo logy  [11]. Geometr ica l ly ,  

f~, forms a convex po lyhed ron  wi th  the pe rmuta t ion  matr ices  as vertices [14]. 

I f  A1,A2 , ' " ,As  are square matr ices  then A1 ~3 A2 ~3 "" @ A s  wil l  denote  the  

direct sum. The mat r ix  A is sa id  to be decomposable i f  there exists a pe rmuta t ion  

mat r ix  P such tha t  
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where B and D are square; otherwise A is indecomposable. Now A is said to be 

partly decomposable if there exist permutation matrices P, Q such that 

where B and D are square; otherwise A is totally indecomposable. It is easy to 

see that a doubly stochastic matrix A is either totally indecomposable or else 

there exist permutation matrices P and Q so that 

PAQ = A1 |  O A~ 

where each At is a totally indecomposable doubly stochastic matrix. 

By the norm of an n-vector x r =  (x~, . . . ,x ,)  we mean the Euclidean norm: 

N x I] = (~;~=1 x~)§ By the norm of an m x n matrix A we mean the spectral norm 

fI A 11 -- sup tl Ax II 
. o  I1 x I1" 

The singular values of A are the square roots of the eigenvalues of  ArA. It follows 

[12] that II AII is 5ust the maximum singular value of A. Moreover there exist 

orthogonal matrices U and V such that 

(1) UAV T = D = diag {2~, .-., 2,} 

where the 2i are the singular values of A. The form (1) is called a singular value 

decomposition of A. 

Notice that if A is doubly stochastic then II AII --- 1, since the eigenvalues of  

ArA are less than or equal to 1. 

Finally, by the convex hull H(A) of A we mean the convex hull of the column 

vectors of  A; that is, H(A) is the set of all Ax where for x r = (xl,  . . . ,x,) ,  xi > 0 

and ~:~'= 1 x~ = 1. 

In Section I, necessary and sufficient conditions are given for the solvability 

of  the equations A X  = B, B Y =  A for X, Ye f~. and A, B arbitrary m x n real 

matrices. This characterization is used in Section II to derive the Green's relations 

on the semigroup ~..  In the final section, the regular matrices in f~. are investigated, 
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I. The equations A X = B, B Y = A 

S. Sherman [18] and S. Schreiber [16] have considered the matrix equation 

A X  = B, where A, B and X are all doubly stochastic. A characterization of A and 

B in order that a solution X exist was given by Schreiber in the special case where 

A is nonsingular. More recently, D. J. Hartfiel [-10] has considered the matrix 

equation A X B  = X ,  with A, B and X doubly stochastic. 

The purpose of this section is to consider the system of matrix equations 

A X  = B, B Y =  A, X ,  Y ~ n  

where A and B are arbitrary m x n real matrices. It is shown that solutions X 

and Y in fin exist if and only if there is a permutation matrix P such that A = BP. 

Let x = (x 1, ... ,xn) be a real n-vector. By the multiplicity ofxi  in x is meant the 

number of elements of x equal to x~. Also x*, ..., x* denote the elements of x 

arranged in nonincreasing order. For a = (aD... ,an) and b = (bl , . . . ,bn) the 

relation ~ is defined by a ~ b if and only if  

(2) a* + ... + a* __< b* + ... b* for l _< k _< n, and ~ ai = ~ b~. 
i = i  i = 1  

We say that a ~ b if a ~ b  and b ~ a .  

The following classical result is fundamental to this section. 

LEMMA 1 (Hardy, Littlewood and P61ya [9, Th. 46]). Let a and b be n-vectors. 

Then the following statements are equivalent. 

i. a ~ b .  

ii. a = bD for  some D ~ n .  

LEMMA 2. Let a and b be n-vectors. Then the following statements are 

equivalent. 

i . a ~ b .  

ii. The equations a X  = b, b Y =  a are solvable for  X ,  Ye~n .  

iii. a = bP for  some permutation matr ix  P. 

PROOF. The equivalence of (i) and (ii) follows from Lemma 1. Now if (i) holds, 

so that a ~ b and b ~ a, then it follows from (2) that each component of a is a 

component of b with the same multiplicity, and conversely. Thus (i) implies (iii). 

The implication (iii) implies (i) is immediate. 

LEMMA 3. Let a = (a,. . . ,an) be a real n-vector with the property that ij 

a t < aj and i <= s <=j, then ai = a~. (That  is, all the multiple components in a 
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occur in blocks.)  Let  a ~, . . . ,  a~, be the dist inct  e lements  o f  a, in order o f  appearanceo 

and let ni be the mul t ip l i c i t y  o f  ai in a. Then  i f  a X  = a f o r  some X ~ f~,,, then 

X = X 1 ~ ... 03 Xk,  where X~ is an n~ • ni doubly  stochastic m a t r i x  f o r  1 < i < k. 

PROOF. Since a X  = a implies a p p T x p  = aP for any P e ~ , ,  no generality is 

lost by assuming that a" > a~.l  for each i. The proof  is by induction on k, the 

result being trivial if k = 1. 

Assume the lemma holds for all vectors with k - 1 distinct components. Suppose 

a has k distinct components and let X = (xij)~f~,, where a X  = a. Then for 

l < j < n  x, 

a 1 -= a 1 = a j  = a i x ~ j  = ]~ a i x i j  d- a i x i j  
i = 1  i = 1  / = n ~ + l  

t r 
< ai  ~ xl j  + az x i j < a l .  

i = l  i = n l + l  

Since equality must hold throughout and since a~ < al', ~ , ~ + ~  x~j = O, j = 

1, ..., nl. Thus the nonzero entries in the first nl columns of X are confined to the 

first nl rows. Then since 

nl nl nl nl nl ~ nl 

~, Z x i j =  E ~ x~ j=  ~ x i j =  E l = n l ,  
i = 1  j = l  j = l  i = 1  j = l  i = 1  j = l  

the nonzero entries of  the first n 1 rows of X are confined to the first na columns. 

Then X = X~ @ Y, where X~ and Y are doubly stochastic. Moreover if b and e 

are vectors consisting of the first n~ and last n - n~ entries of  a, respectively, so 

that in block form a = (b, c), then 

( X~ 0 ) 

a X = ( b , c )  0 Y = ( b X D c Y ) "  

Since e has only k - I distinct entries, the result now follows by induction. 

LEMMA 4. Let  b and c be n-vectors with b . ~  c. I f  X e f t ,  is to ta l ly  in- 

decomposable  and b X  = c, then all  the e lements  o f  b are equal  and b = c. 

PROOF. Let P and Q be permutation matrices such that bP T and cQ have 

their components in nonincreasing order. Then bP T = cQ since b ~ r Now let 

a = bP T = cQ. Then a has the form given in Lemma 3 and b X  = e implies that 

b p T p X Q  = cQ, so that a P X Q  = a. Thus P X Q  = X 1 q) ... q) x k where each X~ is 

n~ x n~, by Lemma 3. Consequently, since X is totally indecomposable, a, b and e 

have only one distinct element. Hence b = c is, in fact, a constant vector. 



220 J . S .  M O N T A G U E  AND R. J. PLEMMONS Israel J. Math. ,  

THEOREM 1. Let A and B denote arbitrary m x n real matrices. Then the 

equations A X  = B, B Y =  A are solvable f o r  X ,  Y in ~ ,  i f  and only i f  A = BP 

for  some permutation matr ix  P. 

PROOF. Suppose A X  = B and B Y =  A for X, Ye f~, and let At, B~ denote the 

i ' th rows of A and B. Then A~ ~ B~ for 1 < i < m. Consequently if X is totally 

indecomposable, A = B by Lemma 4. Otherwise choose permutation matrices R 

and Q such that R X Q = X ~  @ ... @ Xk, where each X~ is totally indecomposable. 

Then 

ART RXQ = A X Q  = BQ 

so that A i R T ( R X Q ) = B i Q ,  for l < i < m .  Let A/ = AiR r and B; = B~Q. 
i . ~  ! ! ! v v t ! Bi = ( B , , . . .  B~k) denote the block Then A~ ~Bi .  Let A~ = ( A , , " ' , A i k )  and 

decomposition of Ai and B~ corresponding to the decomposition of X. Then 

A~jXj ' =B~j for l < j < k .  

Now let a ' l , ' " , ak 'be  the distinct elements of A~ (and hence of B~), with 

a~ > a~ > ... > a~. Further, let nj~ be the multiplicity of a~ in Aij, let mj. t be the 

multiplicity of a~ in B~ i and let nt be the multiplicity of at'in Ai (and hence in Bi). 

Then 

n l 

k k 

~, n j l=  ~ m jr for each I. 
i = 1  1=1 

Now since B,'j < A,~., then m j, s n j,  for each j. Since Xff=, m jl = X f i l  ni,,  this 

means m jl = nil for each j. Thus the multiplicity of a;  in At' j is equal to its 

multiplicity in B~ for each j. This argument can now be applied again to get 

m j2 = n j2 for each j,  etc., eventually giving m jr = n jr for each I. Thus A,j ..~ Bgj 
! 

for each j.  Then since X i is totally indecomposable, A~i = B~j is a constant vector 

by Lemma 4. This means that Ai = Bi, for 1 < i _< m, so that AR T = BQ. Thus 

A = BP where P = QR. 

The converse is immediate. 

The proof of the following corollary is obtained by taking transposes in the 

previous theorem. 

COROLLARY 1. Let A and B be arbitrary m x n real matrices. Then the 

matrix  equations X A  = B, YB = A are solvable for  X ,  Y in f~m i f  and only i f  

A = PB for  some permutation matr ix  P. 
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II. The Green's relations in fl.  

In this section some of the algebraic properties of the semigroup fin are ex- 
plored. In particular, the Green's relations on fin are derived by use of Theorem 1 

and its corollary. The following concepts from [4, Chapter II] will be needed. 

Let S denote a semigroup with identity and let a, b ~ S. The relation ~[LP, J ]  

is defined on S by a ~ b  [ a ~ b ,  a J b ]  if and only if a and b generate the same 

principal right [left, two-sided] ideal in S. The relation ~ff is defined on S by 

3f' = .~e n ~ .  Then each of L~ ~ ~ ,  J and J f  is an equivalence relation. Finally, 

the intersection of all the equivalence relations on S containing Se u ~ is denoted 

by ~.  These are known as the Green's relations and they play a fundamental role 

in the study of the algebraic structure of semigroups. 

From the definition of ~,  if a, b ~ S then a ~ b  if and only if there exist x and 

y ~ S such that ax = b and by = a. Dually, a ~ b  if and only if there exist x and 

y E S such that xa = b and yb = a. The ~ -  [L~ ~  J - ,  J~4 ~ - ,  ~ - ]  class of S 

containing a will be denoted by Ra[Ln, Ja, Ha, Da]. 

In particular then, the problem of characterizing the Green's relations on f~, 

may be solved by characterizing solutions to certain matrix equations which 

define tile appropriate equivalence classes. The next theorem follows immediately 

from Theorem 1 and. ts Corollary. 

THEOREM 2. Let A,  B ~ ~,.  Then 

i. A N B  i f  and only i f  A = BP for some P s i , .  

ii. A ~ B  i f  and only i f  A = QB for  some Q e ~ , .  

iii. A.fYB i f  and only i f  A = BP = QB for some P, Q ~ , .  

iv. A ~ B  i f  and only i f  A = PBQ for some P, Q ~ ~ , .  

Now since the topological semigroup ~, is compact, the relations J and ~ are 

the same on fin [11, p. 30]. 

REMARKS 

1. It follows from Theorem 1 that each N -  [ ~ - ,  ~ - ,  ~ - ]  class of fl, is 

finite. Thus each principal right [left, two-sided] ideal of O, has only a finite 

number of generators. 

2. If A, B~f l ,  and A R B ,  then the convex hulls of the columns of A and B 

are of course the same. That the converse of this statement does not always hold 

is evident by the following example. 

Let 
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A = 
�89 

and B = 
i i  1 3 ~ 

0 ~ g 

1 3 0 -ff g 

l 3 1 

0 �89 ~ ~ 

Then the convex hulls of  the columns of  A and B consist of  all nonnegative 

vectors of  the form 

I , a+b=�89 

J 
Clearly A and B are not ~ ' - re la ted .  

HL  Regular matrices in t) ,  

An element a in a semigroup S is said to be regular  if  the equation a = axa  is 

solvable for x ~ S. If  in addition x = xax ,  then a and x are said to be semi-inverses.  

Notice that if a = axa  then a and x a x  are semi-inverses. In this section the 

characterizations of the Green's relations given in Section II are used to investigate 

regularity in I) n. 

Clearly not every matrix in f~, is regular. For  example, the only regular doubly 

stochastic nonsingular matrices are the permutations matrices. 

I f  an element in a ~-class D of a semigroup S is regular then each element in D 

is regular [-4] and D is called a regular  ~-c lass .  In this case, associated with D is ~t 

maximal subgroup of  S, isomorphic to each ~-c lass  of  S in D that contains an 

idempotent. 

The maximal subgroup of f~, containing the n • n identity matrix I is the group 

~ ,  of  all n x n permutation matrices. At the other extreme, the only idempotent 

in ft, of  rank 1 is A = (1/n) and the maximal subgroup of f~, containing A is 

HA = {A}. Stefan Schwarz [17] and H. K. Farahat [7] have shown that the 

maximal subgroups of ~), are direct products of symmetric groups. This result 

can also be obtained by using our characterization of  the Green's relation ~o o13 

f~,, in conjunction with the following well known result. 
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LEMMA 5 (Doob [5]). An n x n doubly  stochastic m a t r i x  E is idempotent  

i f  and only  i f  there exists  a permuta t ion  m a t r i x  P such that  P E P  r has the f o r m  

P E P  r = E 1 • ... t~ E k 

where each Ei is the ).i x ).~ m a t r i x  (1/2~), n = 21 + ... + "~k and ~.1 > t~2 ~ "'" 

>=),k~ l .  

If E itself has the form given in the lemma then it will be called a canonical  

idempotent .  Clearly each idempotent in fn is symmetric and, moreover, fn 

contains only a finite number of idempotents. 

LEMMA 6. An ~ - [ . Z - ]  class o f  f ~  contains at most  one idempotent .  I f  

a ~ -c las s  D o f f ~  contains an idempotent  it contains exac t l y  one canonical  

idempotent .  

PROOF. Let E, F be idempotents in an ~-class R of fin. Then E and F are left 

identities for the elements in R so that 

E = E r = (FE) T = ETF T = E F  = F. 

If a ~-class D contains an idempotent E then P E P  T ~ D for each permutation 

matrix P so that D contains a canonical idempotent. However, from the form 

given in Lemma 5, if J, J '  are distinct canonical idempotents, then there do not 

exist permutation matrices P, Q such that J '  = PJQ.  Thus D contains at most 

one canonical idempotent by Theorem 2. 

The regular matrices A E f~, that is, the matrices A for which the equation 

A = A X A  is solvable in f~, will now be characterized in several ways. The fol- 

lowing concepts will facilitate these characterizations. 

By the Moore-Penrose  9enera l i zed  inverse of an arbitrary m x n complex 

matrix A is meant the unique solution to the equaticns 

A = A X A ,  X = X A X  with A X ,  X A  Hermitian. 

The solution always exists and is unique. It will be denoted by A § The properties 

and applications of such inverses are described in a number of papers including 

those of Penrose [ 15], Ben Israel and Charnes [1], and Greville [8]. The following 

discussions will be restricted to n • n real matrices A, in which case the requirement 

on the idempotents A A  + and A + A  is that they be symmetric. 

Consider the singular value decomposition 

(3) U A V  r = D = diag {21,'",2,}. 
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It follows that if D'is obtained from D by inverting the nonzero 2i then 

(4) A + = VTD'U 

Now the matrix A is called a part ial  isometry if the linear transformation 

y = A x  preserves Euclidean distances on the range R(A T) o f  AT; that is, if 

1[ A x l  - Ax2 [I = ]l x l  - x2 []' for all x l , x 2  E R(Ar). 

This condition may be readily shown to be equivalent to 

II Ax II = II x II for all x e R(Ar). 

It has been shown by Erdelyi [-6] that the matrix A is a partial isometry if and 

only i f A  + = A  r.  
Finally, A is said to be row-monotone if 

A x  >= O, x e R(A r) implies x => 0. 

It was shown in [-2, Th. 3] that ifA is nonnegative then A + is nonnegative if and only 

i fA and A r are row-monotone. Regular matrices in f~, are now characterized. 

THEOREM 3. Let  Aef~n.  Then  the fo l lowing statements are equivalent. 

1. A is regular. 

2. A r is the unique semi-inverse o f  A in l'~,. 

3. The  s ingular  values o f  A are 0 and 1. 

4. A is a part ial  isometry. 

5. A and A T are row-monotone. 

6. A + is nonnegative. 

7. II II-- 1. 
8.  A + = A r. 

PROOF. 

(1 => 2). Let X be any semi-inverse of A in f~,,. Then A X ,  in the E-class RA 

containing A, is idempotent and A X  = A P  for some permutation matrix P, by 

Theorem 2. Now (AP) r = A P  so that A r = PAP. Then A A  r = A P A P  = A P  = A X .  

Also (PA) 2 = P A P A  = PA so that PA = X A ,  since the idempotent in the ~!,r 

containing A is unique by Lemma 6. Then 

X = X A X  = P A X  = P A P  = A ~. 

(2 => 3). Since A r A  is idempotent its eigenvalues are 0 and 1, so that the singular 

values of A are 0 and 1. 

(3 =~ 4). If  the singular values of A are 0 and 1 then A r A  is idempotent since 
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there exists an orthogonal matrix U such that U A r A U  r = diag {21, '" ,  2,), where 
2~ = 0 or 1. Now A r A  and A r have the same range. Thus since an idempotent is 

the identity on its range, x ~ R(A r) implies that A r A x  = x. Then for x ~ R(A r) 

= R(ATA)  

[1 A x  [I = xT A TAx = xTx  = 1[ x 1[" 

(4 ~ 5). By [6], A r = A + so that from [2], A and A r are row-monotone. 

(5 ~ 6). This also follows from [2]. 

(6 ~ 7). Assume that A is nonnegative. To show that II A+ II = x, it suffices to 

show that A + ~ f~,. Let e denote the column n-vector of ones. Now since A ~ ~, ,  

Ae  = A r e  = e. 

Then 

e = ATe = AT(A+)TAre  = AT(A+)re  = (A+A)Te = A + A e  = A+e. 

Dually ( A + ) r e = e ,  so that A + ~ f~, and therefore ][A + II = 1, 

(7) => (8). if  [I A + I[ = 1 then since the nonzero singular values of A are the 

reciprocals of those of A + by (3) and (4), the singular values of A are 0 and 1. 

Consequently A A  T and A r A  are idempotent so that A + = A T. 

(8 => 1). This follows from the definition of A +. 

It is shown next that regular doubly stochastic matrices are obtained from 

unitary matrices. If  U = (u,j) is unitary, then the matrix A = (a~j), where a~ 

= ]u~j I z for each i and j,  is doubly stochastic. Matrices obtained in this way are 

said to be orthostochastic.  Not every doubly stochastic matrix has this property 

[-14]. 

TrIEOREM 4. Each regular  doubly  stochastic m a t r i x  is orthostochastic.  

PROOF. Let A be regular in f~, and let E denote the canonical idempotent in 

D a. Then by Theorem 2 there exist permutation matrices P and Q such that 

E = PAQ.  In particular then, it suffices to show that E is orthostochastic. 

Now E = E1 0 " "  @ER where El is 2~ x 2i with each entry 1/2 i for 1 < i < k. 

To show that E is orthostochastic it suffices to show that each E~ is orthostochastic. 

However, if 2 is any positive integer and if co is a primitive ,Uth root of  1, then the 

matrix M =(ml i  ) where 

m i j  = lo.)(i-1)(j-1) 

is unitary and thus the matrix 
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(l 123 = (i/43 

is orthostochastic. Therefore A is orthostochastic. 

The converse of the theorem is not true. Notice that 

is orthostochastic but not regular. 

Israel J. Math., 

The final result provides a partial solution to Mirsky's Problem No. (iv) in 

[14, p. 243], asking for a characterization of those doubly stochastic matrices that 

are unitarily similar to a diagonal matrix. The characterization is given for the 

regular matrices in f~,. 

THEOREM 5. Let A ~ ~, .  Then A is regular and unitarily similar to a diagonal 

matr ix  i f  and only i f  A belongs to a subgroup o f  ~ , ,  in which ease the nonzero 

eigenvalues o f  A are on the unit circle. 

PROOF. Suppose A is regular and U A U * = D = d i a g { 2 1 , . . . , 2 , }  for some 

unitary matrix U. Then A + = U*D'U where D' is obtained from D by inverting 

the nonzero entries. However, since A is regular it follows that A + =  A T by 

Theorem 3. Then AA T = ATA is idempotent and thus A belongs to a subgroup of 

~,.  Also, since U*D'U E ~, ,  the nonzero eigenvalues of A must lie on the unit 

circle. 
Conversely if A belongs to a subgroup H of ft ,  with identity E, then A A  r 

= ATA = E by Theorem 3. Thus A is regular and, in particular, normal, so that 

A is unitarily similar to a diagonal matrix. 

IV. Appendix: Sub-doubly stochastic matrices 

Let S, denote the set of all n • n nonnegative matrices having row and column 

sums at most one. Then Sn is a multiplicative semigroup containing f~, as a 

subsemigroup. In addition, Sn is a convex polyhedron with f~. on its boundary. 

The set of  all n • n sub-permutation matrices (that is, all 0 - 1  matrices in S.) 

forms the vertices of S, [13]. 

Many of the results given in the previous sections also hold with f~, replaced by 

S,. The purpose of this appendix is to indicate how the previous results for f~, 

can be modified in order to obtain similar theorems for S~. First, it is shown how 

Theorem 1 can be restated for S, by modifying Lemmas 1-4. 

If  r is any real number then let 
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{~  i f r > O ,  

? = i f r  < 0 .  

For an n-vector a = (al, "", a,), 6 is defined to be (61, "", 6,). Then by applying 

[13, Th. 6], Lemma 1 can be replaced by the following. 

LEMMA 1'. Let a and b be n-vectors. Then the following are equivalent. 

(i) a ~ b a n d - a ~ - [ ~ .  

(ii) a = bS for  some S ~ S,,. 

Now Lemma 2 remains valid when f~, is replaced by S,. For the proof one notes 

that if a ~  b, - a ~  - b, b ~  6 and - b ~  - 6, then a ~ b. 

In Lemma 3, f2, is replaced by S, and the conclusion is changed to read 

"X  = X~ @...  @Xk, where all but possibly one of the X~ are doubly stochastic, 

the exceptional one corresponding to a ' =  0".  The proof is essentially the same 

except that the ordering of the elements of a is different. 

Finally, Lemma 4 remains valid when f~, is replaced by Sn and Theorem 1 can 

be restated as follows. 

THEOREM 1'. Let A and B denote arbitrary m • n real matrices. Then the 

equations A X  = B, B Y =  A are solvable for  X, Y in S, i f  and only i f  A = BP 

for  some permutation matrix P. 

The proof of Theorem 1' is exactly the same as the proof of Theorem 1, provided 

that f2, is replaced by S n. A similar restatement of Corollary 1 can be given. 

The entire Section II can be stated in terms of Sn as well as f~n. Thus Theorem 2 

with f~n replaced by Sn, characterizes the Green's relations on the semigroup Sn. 

In Section III, Lemma 5 can be modified to give a characterization of the 

doubly sub-stochastic idempotents by replacing PEP r = E 1 @ ... ~ E  k by 

p E p  r = E 1 @ ... O) Ek t~ Z 

where Z is the zero matrix of order m where E has exactly m nonzero rows 

[columns]. Thus Lemma 6 remains valid with ~in replaced by Sn. 

The following theorem is immediate from the restatements of Corollary 2 and 

Lemma 6. It shows that regularity is Sn can be studied in terms of regularity in 

f~m, for some m < n. 

THEOREM 6. Let A ~ S n. Then A is regular in Sn i f  and only i f  there exist 

permutation matrices P and Q such that 
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P A Q  = B @ Z  

where B is regular in Ore, f o r  some m < n, and Z is the zero matr ix  o f  order 

n - r e .  

The  max ima l  subgroups  o f  S.  can now be de te rmined  by  app ly ing  Theorem 6 

and  the remarks  preceding  L e m m a  5. 

COROLLARY 3. The  semigroup S.  contains f ini te ly  many  m a x i m a l  subgroups. 

each o f  which is isomorphic to a direct product of  fu l l  symmetr ic  groups. 

Fina l ly ,  we note  tha t  Theorem 3 and  Theorem 5 ho ld  with  f~. rep laced  

by  S. ,  whenever  A is not  the zero mat r ix ,  while  Theorem 4 is given only 

for  ~ . .  
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