DOUBLY STOCHASTIC MATRIX EQUATIONS

BY

J. S. MONTAGUE AND R. J. PLEMMONS[†]

ABSTRACT

It is shown that for real $m \times n$ matrices A and B the system of matrix equations AX = B, BY = A is solvable for X and Y doubly stochastic if and only if A = BP for some permutation matrix P. This result is then used to derive other equations and to characterize the Green's relations on the semigroup Ω_n of all $n \times n$ doubly stochastic matrices. The regular matrices in Ω_n are characterized in several ways by use of the Moore-Penrose generalized inverse. It is shown that a regular matrix in Ω_n is orthostochastic and that it is unitarily similar to a diagonal matrix if and only if it belongs to a subgroup of Ω_n . The paper is concluded with extensions of some of these results to the convex set S_n of all $n \times n$ nonnegative matrices having row and column sums at most one.

All matrices considered in this paper are real. Most of the definitions and notation are found in [12], although some are given below.

A square matrix $A = (a_{ij})$ is doubly stochastic if

$$a_{ij} \ge 0$$
 and $\sum_{k=1}^{n} a_{ik} = \sum_{k=1}^{n} a_{kj} = 1$ for each *i* and *j*.

Let Ω , denote the set of all $n \times n$ doubly stochastic matrices and let \mathscr{P}_n be the set of all $n \times n$ permutation matrices, that is, doubly stochastic matrices $P = (p_i)$ with $p_{ij} = 0$ or 1 for each *i* and *j*. Algebraically, Ω_n forms a semigroup under matrix multiplication and \mathscr{P}_n is a subgroup of Ω_n . Moreover, Ω_n is a compact Hausdorff semigroup with respect to the natural topology [11]. Geometrically, Ω_n forms a convex polyhedron with the permutation matrices as vertices [14].

If A_1, A_2, \dots, A_s are square matrices then $A_1 \oplus A_2 \oplus \dots \oplus A_s$ will denote the *direct sum*. The matrix A is said to be *decomposable* if there exists a permutation matrix P such that

[†]His research was supported by the N. S. F. Grant GP-15943.

Received October 15, 1972

$$PAP^{T} = \begin{bmatrix} B & 0 \\ 0 & D \end{bmatrix},$$

where B and D are square; otherwise A is *indecomposable*. Now A is said to be *partly decomposable* if there exist permutation matrices P, Q such that

$$PAQ = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix},$$

where B and D are square; otherwise A is *totally indecomposable*. It is easy to see that a doubly stochastic matrix A is either totally indecomposable or else there exist permutation matrices P and Q so that

$$PAQ = A_1 \oplus \cdots \oplus A_s$$

where each A_i is a totally indecomposable doubly stochastic matrix.

By the norm of an n-vector $x^T = (x_1, \dots, x_n)$ we mean the Euclidean norm: $||x|| = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$. By the norm of an $m \times n$ matrix A we mean the spectral norm

$$\|A\| = \sup_{x\neq 0} \frac{\|Ax\|}{\|x\|}.$$

The singular values of A are the square roots of the eigenvalues of $A^{T}A$. It follows [12] that ||A|| is just the maximum singular value of A. Moreover there exist orthogonal matrices U and V such that

(1)
$$UAV^{T} = D = \operatorname{diag} \left\{ \lambda_{1}, \cdots, \lambda_{n} \right\}$$

where the λ_i are the singular values of A. The form (1) is called a singular value decomposition of A.

Notice that if A is doubly stochastic then $||A|| \leq 1$, since the eigenvalues of $A^{T}A$ are less than or equal to 1.

Finally, by the convex hull H(A) of A we mean the convex hull of the column vectors of A; that is, H(A) is the set of all Ax where for $x^T = (x_1, \dots, x_n), x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$.

In Section I, necessary and sufficient conditions are given for the solvability of the equations AX = B, BY = A for $X, Y \in \Omega_n$ and A, B arbitrary $m \times n$ real matrices. This characterization is used in Section II to derive the Green's relations on the semigroup Ω_n . In the final section, the regular matrices in Ω_n are investigated.

I. The equations AX = B, BY = A

S. Sherman [18] and S. Schreiber [16] have considered the matrix equation AX = B, where A, B and X are all doubly stochastic. A characterization of A and B in order that a solution X exist was given by Schreiber in the special case where A is nonsingular. More recently, D. J. Hartfiel [10] has considered the matrix equation AXB = X, with A, B and X doubly stochastic.

The purpose of this section is to consider the system of matrix equations

$$AX = B, BY = A, X, Y \in \Omega_n$$

where A and B are arbitrary $m \times n$ real matrices. It is shown that solutions X and Y in Ω_n exist if and only if there is a permutation matrix P such that A = BP.

Let $x = (x_1, \dots, x_n)$ be a real *n*-vector. By the *multiplicity* of x_i in x is meant the number of elements of x equal to x_i . Also x_1^*, \dots, x_n^* denote the elements of x arranged in nonincreasing order. For $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ the relation \leq is defined by $a \leq b$ if and only if

(2)
$$a_1^* + \dots + a_k^* \leq b_1^* + \dots + b_k^*$$
 for $1 \leq k \leq n$, and $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$.

We say that $a \approx b$ if $a \leq b$ and $b \leq a$.

The following classical result is fundamental to this section.

LEMMA 1 (Hardy, Littlewood and Pólya [9, Th. 46]). Let a and b be n-vectors. Then the following statements are equivalent.

i. $a \leq b$.

ii. a = bD for some $D \in \Omega_n$.

LEMMA 2. Let a and b be n-vectors. Then the following statements are equivalent.

i. $a \approx b$.

ii. The equations aX = b, bY = a are solvable for X, $Y \in \Omega_n$.

iii. a = bP for some permutation matrix P.

PROOF. The equivalence of (i) and (ii) follows from Lemma 1. Now if (i) holds, so that $a \leq b$ and $b \leq a$, then it follows from (2) that each component of a is a component of b with the same multiplicity, and conversely. Thus (i) implies (iii). The implication (iii) implies (i) is immediate.

LEMMA 3. Let $a = (a, \dots, a_n)$ be a real n-vector with the property that i_j $a_i < a_j$ and $i \leq s \leq j$, then $a_i = a_s$. (That is, all the multiple components in a occur in blocks.) Let a'_1, \dots, a'_k be the distinct elements of a, in order of appearance, and let n_i be the multiplicity of a_i in a. Then if aX = a for some $X \in \Omega_{\eta}$, then $X = X_1 \oplus \dots \oplus X_k$, where X_i is an $n_i \times n_i$ doubly stochastic matrix for $1 \leq i \leq k$.

PROOF. Since aX = a implies $aPP^TXP = aP$ for any $P \in \mathcal{P}_n$, no generality is lost by assuming that $a'_i > a'_{i+1}$ for each *i*. The proof is by induction on *k*, the result being trivial if k = 1.

Assume the lemma holds for all vectors with k - 1 distinct components. Suppose a has k distinct components and let $X = (x_{ij}) \in \Omega_n$, where aX = a. Then for $1 \leq j \leq n_1$,

$$a'_{1} = a_{1} = a_{j} = \sum_{i=1}^{n} a_{i} x_{ij} = \sum_{i=1}^{n} a_{i} x_{ij} + \sum_{i=n_{1}+1}^{n} a_{i} x_{ij}$$
$$\leq a'_{1} \sum_{i=1}^{n_{1}} x_{ij} + a'_{2} \sum_{i=n_{1}+1}^{n} x_{ij} \leq a_{1}.$$

Since equality must hold throughout and since $a'_2 < a'_1$, $\sum_{i=n_1+1}^n x_{ij} = 0$, $j = 1, \dots, n_1$. Thus the nonzero entries in the first n_1 columns of X are confined to the first n_1 rows. Then since

$$\sum_{i=1}^{n_1} \sum_{j=1}^{n_1} x_{ij} = \sum_{j=1}^{n_1} \sum_{i=1}^{n_1} x_{ij} = \sum_{j=1}^{n_1} \sum_{i=1}^{n_1} x_{ij} = \sum_{j=1}^{n_1} x_{ij} = \sum_{j=1}^{n_1} 1 = n_1,$$

the nonzero entries of the first n_1 rows of X are confined to the first n_1 columns. Then $X = X_1 \oplus Y$, where X_1 and Y are doubly stochastic. Moreover if b and c are vectors consisting of the first n_1 and last $n - n_1$ entries of a, respectively, so that in block form a = (b, c), then

$$aX = (b,c) \begin{pmatrix} X_1 & 0 \\ 0 & Y \end{pmatrix} = (bX_1, cY)$$

Since c has only k - 1 distinct entries, the result now follows by induction.

LEMMA 4. Let b and c be n-vectors with $b \approx c$. If $X \in \Omega_n$ is totally indecomposable and bX = c, then all the elements of b are equal and b = c.

PROOF. Let P and Q be permutation matrices such that bP^T and cQ have their components in nonincreasing order. Then $bP^T = cQ$ since $b \approx c$. Now let $a = bP^T = cQ$. Then a has the form given in Lemma 3 and bX = c implies that $bP^TPXQ = cQ$, so that aPXQ = a. Thus $PXQ = X_1 \oplus \cdots \oplus X_k$ where each X_i is $n_i \times n_i$, by Lemma 3. Consequently, since X is totally indecomposable, a, b and c have only one distinct element. Hence b = c is, in fact, a constant vector. THEOREM 1. Let A and B denote arbitrary $m \times n$ real matrices. Then the equations AX = B, BY = A are solvable for X, Y in Ω_n if and only if A = BP for some permutation matrix P.

PROOF. Suppose AX = B and BY = A for $X, Y \in \Omega_n$ and let A_i, B_i denote the *i*'th rows of A and B. Then $A_i \approx B_i$ for $1 \le i \le m$. Consequently if X is totally indecomposable, A = B by Lemma 4. Otherwise choose permutation matrices R and Q such that $RXQ = X_1 \oplus \cdots \oplus X_k$, where each X_i is totally indecomposable. Then

$$AR^T R X Q = A X Q = B Q$$

so that $A_i R^T (RXQ) = B_i Q$, for $1 \le i \le m$. Let $A'_i = A_i R^T$ and $B'_i = B_i Q$. Then $A'_i \approx B'_i$. Let $A'_i = (A'_{i1}, \dots, A'_{ik})$ and $B'_i = (B'_{i1}, \dots, B'_{ik})$ denote the block decomposition of A_i and B_i corresponding to the decomposition of X. Then $A'_{ii}X_i = B'_{ii}$ for $1 \le i \le k$.

Now let a'_1, \dots, a_k be the distinct elements of A'_i (and hence of B'_i), with $a'_1 > a'_2 > \dots > a'_k$. Further, let n_{jl} be the multiplicity of a'_l in A_{ij} , let m_{jl} be the multiplicity of a'_l in B_{ij} and let n_l be the multiplicity of a'_l in A_i (and hence in B_i). Then

$$n_l = \sum_{j=1}^k n_{jl} = \sum_{j=1}^k m_{jl} \text{ for each } l.$$

Now since $B'_{ij} \leq A'_{ij}$, then $m_{j1} \leq n_{j1}$ for each *j*. Since $\sum_{j=1}^{k} m_{j1} = \sum_{j=1}^{k} n_{j1}$, this means $m_{j1} = n_{j1}$ for each *j*. Thus the multiplicity of a'_{1} in A'_{ij} is equal to its multiplicity in B'_{ij} for each *j*. This argument can now be applied again to get $m_{j2} = n_{j2}$ for each *j*, etc., eventually giving $m_{j1} = n_{j1}$ for each *l*. Thus $A'_{ij} \approx B'_{ij}$ for each *j*. Then since X_{j} is totally indecomposable, $A'_{ij} = B'_{ij}$ is a constant vector by Lemma 4. This means that $A_{i} = B_{i}$, for $1 \leq i \leq m$, so that $AR^{T} = BQ$. Thus A = BP where P = QR.

The converse is immediate.

The proof of the following corollary is obtained by taking transposes in the previous theorem.

COROLLARY 1. Let A and B be arbitrary $m \times n$ real matrices. Then the matrix equations XA = B, YB = A are solvable for X, Y in Ω_m if and only if A = PB for some permutation matrix P.

II. The Green's relations in Ω_n

In this section some of the algebraic properties of the semigroup Ω_n are explored. In particular, the Green's relations on Ω_n are derived by use of Theorem 1 and its corollary. The following concepts from [4, Chapter II] will be needed.

Let S denote a semigroup with identity and let $a, b \in S$. The relation $\mathscr{R}[\mathscr{L},\mathscr{J}]$ is defined on S by $a \mathscr{R}b [a\mathscr{L}b, a\mathscr{J}b]$ if and only if a and b generate the same principal right [left, two-sided] ideal in S. The relation \mathscr{H} is defined on S by $\mathscr{H} = \mathscr{L} \cap \mathscr{R}$. Then each of $\mathscr{L}, \mathscr{R}, \mathscr{J}$ and \mathscr{H} is an equivalence relation. Finally, the intersection of all the equivalence relations on S containing $\mathscr{L} \cup \mathscr{R}$ is denoted by \mathscr{D} . These are known as the Green's relations and they play a fundamental role in the study of the algebraic structure of semigroups.

From the definition of \mathscr{R} , if $a, b \in S$ then $a \mathscr{R}b$ if and only if there exist x and $y \in S$ such that ax = b and by = a. Dually, $a\mathscr{L}b$ if and only if there exist x and $y \in S$ such that xa = b and yb = a. The $\mathscr{R} - [\mathscr{L} -, \mathscr{J} -, \mathscr{R} -, \mathscr{Q} -]$ class of S containing a will be denoted by $R_a[L_a, J_a, H_a, D_a]$.

In particular then, the problem of characterizing the Green's relations on Ω_n may be solved by characterizing solutions to certain matrix equations which define the appropriate equivalence classes. The next theorem follows immediately from Theorem 1 and ts Corollary.

THEOREM 2. Let $A, B \in \Omega_n$. Then

- i. $A \mathscr{R}B$ if and only if A = BP for some $P \in \mathscr{P}_n$.
- ii. $A\mathscr{L}B$ if and only if A = QB for some $Q \in \mathscr{P}_n$.
- iii. A $\mathscr{H}B$ if and only if A = BP = QB for some $P, Q \in \mathscr{P}_n$.
- iv. $A \mathscr{D} B$ if and only if A = PBQ for some $P, Q \in \mathscr{P}_n$.

Now since the topological semigroup Ω_n is compact, the relations \mathscr{J} and \mathscr{D} are the same on Ω_n [11, p. 30].

Remarks

1. It follows from Theorem 1 that each $\mathscr{R} - [\mathscr{L} -, \mathscr{H} -, \mathscr{D} -]$ class of Ω_n is finite. Thus each principal right [left, two-sided] ideal of Ω_n has only a finite number of generators.

2. If A, $B \in \Omega_n$ and $A \mathscr{R}B$, then the convex hulls of the columns of A and B are of course the same. That the converse of this statement does not always hold is evident by the following example.

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{8} & \frac{3}{8} \\ \frac{1}{2} & 0 & \frac{1}{8} & \frac{3}{8} \\ \frac{1}{2} & 0 & \frac{1}{8} & \frac{3}{8} \\ 0 & \frac{1}{2} & \frac{3}{8} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{3}{8} & \frac{1}{8} \end{pmatrix}$$

Then the convex hulls of the columns of A and B consist of all nonnegative vectors of the form

$$\left(\begin{array}{c} a \\ a \\ b \\ b \\ b \end{array} \right), a+b=\frac{1}{2}.$$

Clearly A and B are not \mathcal{R} -related.

III. Regular matrices in Ω_n

An element a in a semigroup S is said to be *regular* if the equation a = axa is solvable for $x \in S$. If in addition x = xax, then a and x are said to be *semi-inverses*. Notice that if a = axa then a and xax are semi-inverses. In this section the characterizations of the Green's relations given in Section II are used to investigate regularity in Ω_n .

Clearly not every matrix in Ω_n is regular. For example, the only regular doubly stochastic nonsingular matrices are the permutations matrices.

If an element in a \mathcal{D} -class D of a semigroup S is regular then each element in D is regular [4] and D is called a *regular* \mathcal{D} -class. In this case, associated with D is a maximal subgroup of S, isomorphic to each \mathcal{H} -class of S in D that contains an idempotent.

The maximal subgroup of Ω_n containing the $n \times n$ identity matrix *I* is the group \mathscr{P}_n of all $n \times n$ permutation matrices. At the other extreme, the only idempotent in Ω_n of rank 1 is $\Lambda = (1/n)$ and the maximal subgroup of Ω_n containing Λ is $H_{\Lambda} = \{\Lambda\}$. Stefan Schwarz [17] and H. K. Farahat [7] have shown that the maximal subgroups of Ω_n are direct products of symmetric groups. This result can also be obtained by using our characterization of the Green's relation \mathscr{H} on Ω_n in conjunction with the following well known result.

LEMMA 5 (Doob [5]). An $n \times n$ doubly stochastic matrix E is idempotent if and only if there exists a permutation matrix P such that PEP^T has the form

$$PEP^T = E_1 \oplus \cdots \oplus E_k$$

where each E_i is the $\lambda_i \times \lambda_i$ matrix $(1/\lambda_i)$, $n = \lambda_1 + \cdots + \lambda_k$ and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k \ge 1$.

If E itself has the form given in the lemma then it will be called a *canonical idempotent*. Clearly each idempotent in Ω_n is symmetric and, moreover, Ω_n contains only a finite number of idempotents.

LEMMA 6. An \mathscr{R} -[\mathscr{L} -] class of Ω_n contains at most one idempotent. If a \mathscr{D} -class D of Ω_n contains an idempotent it contains exactly one canonical idempotent.

PROOF. Let *E*, *F* be idempotents in an \mathscr{R} -class *R* of Ω_n . Then *E* and *F* are left identities for the elements in *R* so that

$$E = E^T = (FE)^T = E^T F^T = EF = F.$$

If a \mathscr{D} -class D contains an idempotent E then $PEP^T \in D$ for each permutation matrix P so that D contains a canonical idempotent. However, from the form given in Lemma 5, if J, J' are distinct canonical idempotents, then there do not exist permutation matrices P, Q such that J' = PJQ. Thus D contains at most one canonical idempotent by Theorem 2.

The regular matrices $A \in \Omega_n$, that is, the matrices A for which the equation A = AXA is solvable in Ω_n , will now be characterized in several ways. The following concepts will facilitate these characterizations.

By the Moore-Penrose generalized inverse of an arbitrary $m \times n$ complex matrix A is meant the unique solution to the equations

$$A = AXA$$
, $X = XAX$ with AX , XA Hermitian.

The solution always exists and is unique. It will be denoted by A^+ . The properties and applications of such inverses are described in a number of papers including those of Penrose [15], Ben Israel and Charnes [1], and Greville [8]. The following discussions will be restricted to $n \times n$ real matrices A, in which case the requirement on the idempotents AA^+ and A^+A is that they be symmetric.

Consider the singular value decomposition

(3)
$$UAV^{T} = D = \operatorname{diag} \{\lambda_{1}, \cdots, \lambda_{n}\}.$$

It follows that if D'is obtained from D by inverting the nonzero λ_i then

Now the matrix A is called a *partial isometry* if the linear transformation y = Ax preserves Euclidean distances on the range $R(A^T)$ of A^T ; that is, if

$$||Ax_1 - Ax_2|| = ||x_1 - x_2||$$
, for all $x_1, x_2 \in R(A^T)$.

This condition may be readily shown to be equivalent to

$$||Ax|| = ||x||$$
 for all $x \in R(A^T)$.

It has been shown by Erdelyi [6] that the matrix A is a partial isometry if and only if $A^+ = A^T$.

Finally, A is said to be row-monotone if

$$Ax \ge 0, x \in R(A^T)$$
 implies $x \ge 0$.

It was shown in [2, Th. 3] that if A is nonnegative then A^+ is nonnegative if and only if A and A^T are row-monotone. Regular matrices in Ω_n are now characterized.

THEOREM 3. Let $A \in \Omega_n$. Then the following statements are equivalent.

1. A is regular.

2. A^T is the unique semi-inverse of A in Ω_n .

- 3. The singular values of A are 0 and 1.
- 4. A is a partial isometry.
- 5. A and A^T are row-monotone.
- 6. A^+ is nonnegative.
- 7. $||A^+|| = 1$.
- 8. $A^+ = A^T$.

PROOF.

 $(1 \Rightarrow 2)$. Let X be any semi-inverse of A in Ω_n . Then AX, in the \mathscr{R} -class R_A containing A, is idempotent and AX = AP for some permutation matrix P, by Theorem 2. Now $(AP)^T = AP$ so that $A^T = PAP$. Then $AA^T = APAP = AP = AX$. Also $(PA)^2 = PAPA = PA$ so that PA = XA, since the idempotent in the \mathscr{L} -class containing A is unique by Lemma 6. Then

$$X = XAX = PAX = PAP = A^{T}.$$

 $(2 \Rightarrow 3)$. Since $A^T A$ is idempotent its eigenvalues are 0 and 1, so that the singular values of A are 0 and 1.

 $(3 \Rightarrow 4)$. If the singular values of A are 0 and 1 then $A^T A$ is idempotent since

there exists an orthogonal matrix U such that $UA^{T}AU^{T} = \text{diag} \{\lambda_{1}, \dots, \lambda_{n}\}$, where $\lambda_{i} = 0$ or 1. Now $A^{T}A$ and A^{T} have the same range. Thus since an idempotent is the identity on its range, $x \in R(A^{T})$ implies that $A^{T}Ax = x$. Then for $x \in R(A^{T}) = R(A^{T}A)$

$$\|Ax\| = x^T A^T A x = x^T x = \|x\|.$$

 $(4 \Rightarrow 5)$. By [6], $A^T = A^+$ so that from [2], A and A^T are row-monotone.

 $(5 \Rightarrow 6)$. This also follows from [2].

 $(6 \Rightarrow 7)$. Assume that A is nonnegative. To show that $||A^+|| = 1$, it suffices to show that $A^+ \in \Omega_n$. Let e denote the column *n*-vector of ones. Now since $A \in \Omega_n$, $Ae = A^T e = e$.

Then

$$e = A^{T}e = A^{T}(A^{+})^{T}A^{T}e = A^{T}(A^{+})^{T}e = (A^{+}A)^{T}e = A^{+}Ae = A^{+}e.$$

Dually $(A^+)^T e = e$, so that $A^+ \in \Omega_n$ and therefore $||A^+|| = 1$.

 $(7) \Rightarrow (8)$. If $||A^+|| = 1$ then since the nonzero singular values of A are the reciprocals of those of A^+ by (3) and (4), the singular values of A are 0 and 1. Consequently AA^T and A^TA are idempotent so that $A^+ = A^T$.

 $(8 \Rightarrow 1)$. This follows from the definition of A^+ .

It is shown next that regular doubly stochastic matrices are obtained from unitary matrices. If $U = (u_{ij})$ is unitary, then the matrix $A = (a_{ij})$, where $a_{ij} = |u_{ij}|^2$ for each *i* and *j*, is doubly stochastic. Matrices obtained in this way are said to be *orthostochastic*. Not every doubly stochastic matrix has this property [14].

THEOREM 4. Each regular doubly stochastic matrix is orthostochastic.

PROOF. Let A be regular in Ω_n and let E denote the canonical idempotent in D_A . Then by Theorem 2 there exist permutation matrices P and Q such that E = PAQ. In particular then, it suffices to show that E is orthostochastic.

Now $E = E_1 \oplus \cdots \oplus E_k$ where E_i is $\lambda_i \times \lambda_i$ with each entry $1/\lambda_i$ for $1 \le i \le k$. To show that E is orthostochastic it suffices to show that each E_i is orthostochastic. However, if λ is any positive integer and if ω is a primitive λ 'th root of 1, then the matrix $M = (m_{ij})$ where

$$m_{ij} = \frac{1}{\sqrt{\lambda}} \omega^{(i-1)(j-1)}$$

is unitary and thus the matrix

 $(|m_{ii}|^2) = (1/\lambda)$

is orthostochastic. Therefore A is orthostochastic.

The converse of the theorem is not true. Notice that

$$A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

is orthostochastic but not regular.

The final result provides a partial solution to Mirsky's Problem No. (iv) in [14, p. 243], asking for a characterization of those doubly stochastic matrices that are unitarily similar to a diagonal matrix. The characterization is given for the regular matrices in Ω_n .

THEOREM 5. Let $A \in \Omega_n$. Then A is regular and unitarily similar to a diagonal matrix if and only if A belongs to a subgroup of Ω_n , in which case the nonzero eigenvalues of A are on the unit circle.

PROOF. Suppose A is regular and $UAU^* = D = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ for some unitary matrix U. Then $A^+ = U^*D'U$ where D' is obtained from D by inverting the nonzero entries. However, since A is regular it follows that $A^+ = A^T$ by Theorem 3. Then $AA^T = A^TA$ is idempotent and thus A belongs to a subgroup of Ω_n . Also, since $U^*D'U \in \Omega_n$, the nonzero eigenvalues of A must lie on the unit circle.

Conversely if A belongs to a subgroup H of Ω_n with identity E, then $AA^T = A^T A = E$ by Theorem 3. Thus A is regular and, in particular, normal, so that A is unitarily similar to a diagonal matrix.

IV. Appendix: Sub-doubly stochastic matrices

Let S_n denote the set of all $n \times n$ nonnegative matrices having row and column sums at most one. Then S_n is a multiplicative semigroup containing Ω_n as a subsemigroup. In addition, S_n is a convex polyhedron with Ω_n on its boundary. The set of all $n \times n$ sub-permutation matrices (that is, all 0-1 matrices in S_n) forms the vertices of S_n [13].

Many of the results given in the previous sections also hold with Ω_n replaced by S_n . The purpose of this appendix is to indicate how the previous results for Ω_n can be modified in order to obtain similar theorems for S_n . First, it is shown how Theorem 1 can be restated for S_n by modifying Lemmas 1–4.

If r is any real number then let

$$\bar{r} = \begin{cases} r & \text{if } r \ge 0, \\ 0 & \text{if } r < 0. \end{cases}$$

For an *n*-vector $a = (a_1, \dots, a_n)$, \tilde{a} is defined to be $(\tilde{a}_1, \dots, \tilde{a}_n)$. Then by applying [13, Th. 6], Lemma 1 can be replaced by the following.

LEMMA 1'. Let a and b be n-vectors. Then the following are equivalent.

- (i) $a \leq \bar{b}$ and $-a \leq -\bar{b}$.
- (ii) a = bS for some $S \in S_n$.

Now Lemma 2 remains valid when Ω_n is replaced by S_n . For the proof one notes that if $a \leq \overline{b}$, $-a \leq -\overline{b}$, $b \leq \overline{a}$ and $-b \leq -\overline{a}$, then $a \approx b$.

In Lemma 3, Ω_n is replaced by S_n and the conclusion is changed to read " $X = X_1 \oplus \cdots \oplus X_k$, where all but possibly one of the X_i are doubly stochastic, the exceptional one corresponding to $a'_i = 0$ ". The proof is essentially the same except that the ordering of the elements of a is different.

Finally, Lemma 4 remains valid when Ω_n is replaced by S_n and Theorem 1 can be restated as follows.

THEOREM 1'. Let A and B denote arbitrary $m \times n$ real matrices. Then the equations AX = B, BY = A are solvable for X, Y in S_n if and only if A = BP for some permutation matrix P.

The proof of Theorem 1' is exactly the same as the proof of Theorem 1, provided that Ω_n is replaced by S_n . A similar restatement of Corollary 1 can be given.

The entire Section II can be stated in terms of S_n as well as Ω_n . Thus Theorem 2 with Ω_n replaced by S_n , characterizes the Green's relations on the semigroup S_n .

In Section III, Lemma 5 can be modified to give a characterization of the doubly sub-stochastic idempotents by replacing $PEP^T = E_1 \oplus \cdots \oplus E_k$ by

$$PEP^{T} = E_{1} \oplus \cdots \oplus E_{k} \oplus Z$$

where Z is the zero matrix of order m where E has exactly m nonzero rows [columns]. Thus Lemma 6 remains valid with Ω_n replaced by S_n .

The following theorem is immediate from the restatements of Corollary 2 and Lemma 6. It shows that regularity is S_n can be studied in terms of regularity in Ω_m , for some $m \leq n$.

THEOREM 6. Let $A \in S_n$. Then A is regular in S_n if and only if there exist permutation matrices P and Q such that

 $PAQ = B \oplus Z$

where B is regular in Ω_m , for some $m \leq n$, and Z is the zero matrix of order n-m.

The maximal subgroups of S_n can now be determined by applying Theorem 6 and the remarks preceding Lemma 5.

COROLLARY 3. The semigroup S_n contains finitely many maximal subgroups, each of which is isomorphic to a direct product of full symmetric groups.

Finally, we note that Theorem 3 and Theorem 5 hold with Ω_n replaced by S_n , whenever A is not the zero matrix, while Theorem 4 is given only for Ω_n .

References

1. A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. XI (1963), 667-699.

2. A. Berman and R. Plemmons, *Monotonicity and the generalized inverse*, SIAM J. Appl. Math., 22 (1972), 155-161.

3. T. L. Boullion and P. L. Odell, *Generalized Inverse Matrices*, John Wiley and Sons, New York, 1971.

4. A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Amer. Math. Soc. Surveys, Vol. I, 1967.

5. J. L. Doob, Topics in the theory of Markov chains, Trans. Amer. Math. Soc. 52 (1942), 37-64.

6. I. Erdelyi, On partial isometries in finite dimensional Euclidean spaces, J. Soc. Indust. Appl. Math. XIV (1966), 453-467.

7. H. K. Farahat, The semigroup of doubly stochastic matrices, Proc. Glasgow Math. Assoc. 7 (1966), 178-183.

8. T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. II (1960), 15-22.

9. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Press, Cambridge, England, 1934.

10. D. J. Hartfiel, The matrix equation AXB = X, Pacific J. Math. 36 (1971), 659-669.

11. K. H. Hofmann and P. S. Mostert. *Elements of compact Semigroups*, Charles E. Merrill, Columbus, Ohio, 1966.

12. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.

13. L. Mirsky, On a convex set of matrices, Arch. Math. 10 (1959), 88-92.

14. L. Mirsky, Results and problems in the theory of doubly stochastic matrices, Z. Wahrscheinlichkeitstheorie und Veiw. Gebiete 1 (1963), 319-334. 15. R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc. 51 (1955), 406-413.

16. S. Schreiber, On a result of S. Sherman concerning doubly stochastic matrices, Proc. Amer. Math. Soc. 9 (1958), 350-353.

17. S. Schwarz, A note on the structure of the semigroup of doubly stochastic matrices, Mat. Casopis Sloven. Akad. Vied. 17 (1967), 308-316.

18. S. Sherman, A correction to "On a conjecture concerning doubly stochastic matrices", Proc. Amer. Math. Soc. 5 (1954), 988-999.

UNIVERSITY OF TENNESSEE,

KNOXVILLE, TENNESSEE, U. S. A.